Preliminary communication

The structural assignment of N-acylkansosamine, 4,6-dideoxy-4-[(R)-2-methoxypropanamido]-3-C-methyl-2-O-methyl-L-mannopyranose, by chemical synthesis

JUJI YOSHIMURA*, KEN-ICHI SATO, AMJAD AQEEL, RHIDDI BIR SINGH, and HIRONOBU HASHIMOTO

Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227 (Japan)

(Received September 19th, 1985; accepted for publication September 23rd, 1985)

The structure of a novel branched-chain amino sugar, N-acylkansosamine, isolated from the antigenic trehalose-containing lipooligosaccharides of Mycobacterium kansasii, was proposed¹ to be 4,6-dideoxy-4-(2-methoxypropanamido)-3-C-methyl-2-O-methyl-L-mannopyranose (1) by ¹H- and ¹³C-n.m.r. spectroscopy and from mass-spectrometric data of derivatives. The manno configuration of 1 was ingeniously deduced from the hydrogen bonding between the hydroxyl group at C-3 and the carbonyl function of the 2-methoxy-propanamido group. The absolute configuration based on the specific rotation, however, is uncertain, because such branched-chain sugars having closely related structures as nogalose (6-deoxy-3-C-methyl-2,4-di-O-methyl-L-mannopyranose) have the opposite sign²; furthermore, the contribution of the N-acyl moiety is difficult to assess. The configuration of the N-acyl group remains to be established. As spectral data of some derivatives are available¹, chemical synthesis should permit definitive structural assignment. This report endorses the proposed stereochemistry at C-3 and indicates from chemical synthesis that kansosamine has the L configuration and the configuration of the N-acyl group is R.

Recently, the authors synthesized³ methyl α -L-sibirosaminide (methyl 4,6-dideoxy-3-C-methyl-4-methylamino- α -L-mannopyranoside), whose basic configuration is the same as that proposed for 1. Methyl 4-amino-4,6-dideoxy-2,3-O-isopropylidene-3-C-methyl- α -L-mannopyranoside (4), which is one of the synthetic intermediates for methyl sibirosaminide, was obtained from L-rhamnose in 6 steps and was utilized as the starting material for the present synthesis.

Coupling of 4 with (S)-2-methoxypropanoic acid with the aid of 3-(3-dimethyl-aminopropyl)-1-ethyl carbodiimide hydrochloride in dichloromethane for 1 h at room temperature gave quantitatively the corresponding (S) amide 5 as a syrup, $[\alpha]_D^{22}$ -76.8° (c 1.0, CHCl₃). Treatment of 5 with 70% acetic acid for 18 h at 80° gave quantitatively the O-deisopropylidenated product 6 as a syrup, $[\alpha]_D^{22}$ -119.5° (c 0.8, CHCl₃). Selective methylation of 6 with equimolar amounts of sodium hydride and methyl iodide in N,N-di-

OME

$$H_3C$$
 CH_3HCCHN
 OH
 OH

methylformamide at -5° gave, in 60% yield, the corresponding 2-methyl ether 8, m.p. $134-136^{\circ}$ (hexane), $[\alpha]_D^{22}$ -77.3° (c 0.8, CHCl₃); ¹H-n.m.r. data see Table I. As described for the (S) isomer, compound 4 was coupled with (R)-2-methoxypropanoic acid, which was prepared by optical resolution of the (RS) acid as the 1-phenylethylamine salt⁴, to give the corresponding (R) amide (7), $[\alpha]_D^{22}$ -117.7° (c 0.5, CHCl₃). The amide 7 was then converted similarly into the 2-methyl ether 9, m.p. $121-122^{\circ}$ (hexane), $[\alpha]_D^{22}$ -35.6° (c 0.5, CHCl₃); ¹H-n.m.r. data see Table I. Comparison of the n.m.r.-spectra of 8 and 9 with that of methyl N-acyl- α -kansosaminide clearly indicated that the spectrum of 9 was superposable on that of the natural compound. The n.m.r. data* were coincident for the two samples, as shown in Table I. Thus, the relative configuration was established as either L-manno with the (R) acyl group or D-manno with the (S) acyl group.

Further confirmation of the structure was performed by conversion of 9 into the corresponding 1-acetate. The glycoside 9 was hydrolyzed with 0.5M sulfuric acid at 85° to give a quantitative yield of the free sugar 1 as a syrup, $[\alpha]_D^{26}$ +5.6° (c 1.1, H₂O, equilibrium); lit. $[\alpha]_D$ +14.7° (c 0.02, H₂O). Furthermore, acetylation of 1 with acetic anhydride in pyridine gave a mixture of 1-acetates (2 and 3, in the ratio of 4 to 3), which was separated by preparative t.l.c. with 7:3 ether—acetone. The ¹H-n.m.r. as well as ¹³C-n.m.r. data of the α anomer 2 coincided again completely with those reported (Tables I and II), thus reconfirming the structure of N-acylkansosamine. Thus, the structure of N-acylkansosamine was assigned as 4,6-dideoxy-4-[(R)-2-methoxypropanamido]-3-C-methyl-2-O-methyl-L-mannopyranose. There remains a little ambiguity concerning the absolute configuration because of the low value of the specific rotation. As a change of the anomeric ratio could reverse the sign of rotation, decisive determination of the absolute configuration awaits chiropotical data for natural N-acylkansosamine derivatives.

^{*1}H-N.m.r. data for natural methyl N-acyl-α-kansosaminide were kindly provided by P. J. Brennan.

TABLE I

1-N.M.R. CHEMICAL SHIFTS (6) AND COUPLING CONSTANTS (Hz) OF N-ACYLKANSOSAMINE DERIVATIVES

Compound	H-1 (J _{1,2})	Н-2	H-4 (J _{4,5})	н -5 (^Ј 5,6)	Н-6	Me-3	<i>NH</i> (J _{4,NH})		H-2'	ОМе	OAc	ОН
2	6.21d (1.5)	3.12d	4.08t (10.0)	3.80dq (5.8)			6.44bd (10.0)	3.80q (6.8)	1.41d	3.40s 3.54s	2.11s	3.00bs
3	5.80s (<1.0)	3.23d	4.03t (10.0)	-	1.27d	1.22s	6.40bd (10.0)	3.80q (7.0)	1.40d	3.37s 3.65s	2.15s	3.15bs
Reported ^a	6.19d (1.5)	3.09d	4.05t (10.4)		1.22d	1.28s	6.41d (10.2)	3.78m (6.8)		3.37s 3.52s	2.09s	2.93bs
8	4.78bs (1.2)	3.10d		3.63dq (6.0)	1.18d	1.27s	6.47d (10.0)	3.78q (6.4)	1.39d	3.40 3.45 3.52		
9	4.77bs (1.3)			3.65dq (6.0)	1.23d	1. 27 s	6.42d (10.2)	3.79q (6.4)	1.40d	3.38 3.39 3.50		
Reported b	4.78d (1.1)	3.08d		3.65dq (6.2)		1.27s (10.3)	6.42d	3.79q	1.41 d	3.38 3.39 3.50		

^a For N-acyl-1-O-acetyl- α -kansosamıne¹. ^b For methyl N-acyl- α -kansosamınıde¹.

¹³C-N.M.R. CHEMICAL SHIFTS (δ) OF 1-O-ACETYL-N-ACYL-α-KANSOSAMINE

	C-1	C-2	C -3	C-4	<i>C</i> -5	C-2'	ОМе	СМе		C=0
Reported ^a	91.1	78.4	71.0	55.4	82.7	69.3	57.4	18.1	18.4	168.9
							59.2	18.8	21.2	174.0
Synthesized b	91.2	78.4	71.1	55.4	82.7	69.3	57.4	18.1	18.4	168.9
							59.2	18.8	21.2	174.0

 $[^]a$ See ref. 1. b Compound 2.

ACKNOWLEDGMENTS

We thank Professor P.J. Brennan and Dr. T. Fujiwara for discussions and for spectral data.

REFERENCES

TABLE II

- 1 S. W. Hunter, T. Fujiwara, R. C. Murphy, and P. J. Brennan, J. Biol. Chem., 259 (1984) 9729-9734.
- N. Hong, M. Funabashi, and J. Yoshimura, Carbohydr. Res., 96 (1981) 21-28; B. K. Bhuyan and
 C. G. Smith, Proc. Natl. Acad. Sci. U.S.A., 54 (1965) 566-572.
- 3 J. Yoshimura, K. Sato, and R. B. Singh, Chem. Lett., (1985) 69-70.
- 4 P. Newman, Optical Resolution Procedures for Chemical Compounds, Vol 2, Part I, Manhattan College, New York, 1981, p. 82.